Hands On Machine Learning With Tensorflow Js

Hands On Machine Learning with TensorFlow js PDF
Author: Kai Sasaki
Publisher: Packt Publishing Ltd
ISBN: 1838827870
Size: 62.87 MB
Format: PDF, ePub, Mobi
Category : Computers
Languages : en
Pages : 296
View: 2327

Get Book



Book Description: Get hands-on with the browser-based JavaScript library for training and deploying machine learning models effectively Key Features Build, train and run machine learning models in the browser using TensorFlow.js Create smart web applications from scratch with the help of useful examples Use flexible and intuitive APIs from TensorFlow.js to understand how machine learning algorithms function Book Description TensorFlow.js is a framework that enables you to create performant machine learning (ML) applications that run smoothly in a web browser. With this book, you will learn how to use TensorFlow.js to implement various ML models through an example-based approach. Starting with the basics, you'll understand how ML models can be built on the web. Moving on, you will get to grips with the TensorFlow.js ecosystem to develop applications more efficiently. The book will then guide you through implementing ML techniques and algorithms such as regression, clustering, fast Fourier transform (FFT), and dimensionality reduction. You will later cover the Bellman equation to solve Markov decision process (MDP) problems and understand how it is related to reinforcement learning. Finally, you will explore techniques for deploying ML-based web applications and training models with TensorFlow Core. Throughout this ML book, you'll discover useful tips and tricks that will build on your knowledge. By the end of this book, you will be equipped with the skills you need to create your own web-based ML applications and fine-tune models to achieve high performance. What you will learn Use the t-SNE algorithm in TensorFlow.js to reduce dimensions in an input dataset Deploy tfjs-converter to convert Keras models and load them into TensorFlow.js Apply the Bellman equation to solve MDP problems Use the k-means algorithm in TensorFlow.js to visualize prediction results Create tf.js packages with Parcel, Webpack, and Rollup to deploy web apps Implement tf.js backend frameworks to tune and accelerate app performance Who this book is for This book is for web developers who want to learn how to integrate machine learning techniques with web-based applications from scratch. This book will also appeal to data scientists, machine learning practitioners, and deep learning enthusiasts who are looking to perform accelerated, browser-based machine learning on Web using TensorFlow.js. Working knowledge of JavaScript programming language is all you need to get started.

Hands On Artificial Intelligence With Javascript

Hands On Artificial Intelligence with JavaScript PDF
Author: Andrei Niscoveanu
Publisher:
ISBN: 9781082864667
Size: 37.79 MB
Format: PDF, Mobi
Category :
Languages : en
Pages : 122
View: 1486

Get Book



Book Description: A.I. powered chatbots, computer vision and neural networks for your web applications using JavaScript.Mission- Teach the reader how to build projects involving Artificial Intelligence using JavaScript as a primary programming language.- Explore various techniques of using Artificial Intelligence in real-world scenarios- Explain what machine learning is and how it can be applied in web applicationsObjectives and achievements- Explore popular platforms using A.I.- Practical examples of A.I. in web apps- Exploring chatbots- Exploring vision based apps- Implementing A.I. in a game

Hands On Machine Learning With Javascript

Hands on Machine Learning with JavaScript PDF
Author: Burak Kanber
Publisher: Packt Publishing Ltd
ISBN: 1788990307
Size: 18.46 MB
Format: PDF, ePub, Mobi
Category : Computers
Languages : en
Pages : 356
View: 3699

Get Book



Book Description: A definitive guide to creating an intelligent web application with the best of machine learning and JavaScript Key Features Solve complex computational problems in browser with JavaScript Teach your browser how to learn from rules using the power of machine learning Understand discoveries on web interface and API in machine learning Book Description In over 20 years of existence, JavaScript has been pushing beyond the boundaries of web evolution with proven existence on servers, embedded devices, Smart TVs, IoT, Smart Cars, and more. Today, with the added advantage of machine learning research and support for JS libraries, JavaScript makes your browsers smarter than ever with the ability to learn patterns and reproduce them to become a part of innovative products and applications. Hands-on Machine Learning with JavaScript presents various avenues of machine learning in a practical and objective way, and helps implement them using the JavaScript language. Predicting behaviors, analyzing feelings, grouping data, and building neural models are some of the skills you will build from this book. You will learn how to train your machine learning models and work with different kinds of data. During this journey, you will come across use cases such as face detection, spam filtering, recommendation systems, character recognition, and more. Moreover, you will learn how to work with deep neural networks and guide your applications to gain insights from data. By the end of this book, you'll have gained hands-on knowledge on evaluating and implementing the right model, along with choosing from different JS libraries, such as NaturalNode, brain, harthur, classifier, and many more to design smarter applications. What you will learn Get an overview of state-of-the-art machine learning Understand the pre-processing of data handling, cleaning, and preparation Learn Mining and Pattern Extraction with JavaScript Build your own model for classification, clustering, and prediction Identify the most appropriate model for each type of problem Apply machine learning techniques to real-world applications Learn how JavaScript can be a powerful language for machine learning Who this book is for This book is for you if you are a JavaScript developer who wants to implement machine learning to make applications smarter, gain insightful information from the data, and enter the field of machine learning without switching to another language. Working knowledge of JavaScript language is expected to get the most out of the book.

Hands On Machine Learning With Azure

Hands On Machine Learning with Azure PDF
Author: Thomas K Abraham
Publisher: Packt Publishing Ltd
ISBN: 1789130271
Size: 75.95 MB
Format: PDF, ePub
Category : Computers
Languages : en
Pages : 340
View: 321

Get Book



Book Description: Implement machine learning, cognitive services, and artificial intelligence solutions by leveraging Azure cloud technologies Key Features Learn advanced concepts in Azure ML and the Cortana Intelligence Suite architecture Explore ML Server using SQL Server and HDInsight capabilities Implement various tools in Azure to build and deploy machine learning models Book Description Implementing Machine learning (ML) and Artificial Intelligence (AI) in the cloud had not been possible earlier due to the lack of processing power and storage. However, Azure has created ML and AI services that are easy to implement in the cloud. Hands-On Machine Learning with Azure teaches you how to perform advanced ML projects in the cloud in a cost-effective way. The book begins by covering the benefits of ML and AI in the cloud. You will then explore Microsoft’s Team Data Science Process to establish a repeatable process for successful AI development and implementation. You will also gain an understanding of AI technologies available in Azure and the Cognitive Services APIs to integrate them into bot applications. This book lets you explore prebuilt templates with Azure Machine Learning Studio and build a model using canned algorithms that can be deployed as web services. The book then takes you through a preconfigured series of virtual machines in Azure targeted at AI development scenarios. You will get to grips with the ML Server and its capabilities in SQL and HDInsight. In the concluding chapters, you’ll integrate patterns with other non-AI services in Azure. By the end of this book, you will be fully equipped to implement smart cognitive actions in your models. What you will learn Discover the benefits of leveraging the cloud for ML and AI Use Cognitive Services APIs to build intelligent bots Build a model using canned algorithms from Microsoft and deploy it as a web service Deploy virtual machines in AI development scenarios Apply R, Python, SQL Server, and Spark in Azure Build and deploy deep learning solutions with CNTK, MMLSpark, and TensorFlow Implement model retraining in IoT, Streaming, and Blockchain solutions Explore best practices for integrating ML and AI functions with ADLA and logic apps Who this book is for If you are a data scientist or developer familiar with Azure ML and cognitive services and want to create smart models and make sense of data in the cloud, this book is for you. You’ll also find this book useful if you want to bring powerful machine learning services into your cloud applications. Some experience with data manipulation and processing, using languages like SQL, Python, and R, will aid in understanding the concepts covered in this book

Hands On Artificial Intelligence For Iot

Hands On Artificial Intelligence for IoT PDF
Author: Amita Kapoor
Publisher: Packt Publishing Ltd
ISBN: 1788832760
Size: 76.74 MB
Format: PDF, Mobi
Category : Computers
Languages : en
Pages : 390
View: 2305

Get Book



Book Description: Build smarter systems by combining artificial intelligence and the Internet of Things—two of the most talked about topics today Key Features Leverage the power of Python libraries such as TensorFlow and Keras to work with real-time IoT data Process IoT data and predict outcomes in real time to build smart IoT models Cover practical case studies on industrial IoT, smart cities, and home automation Book Description There are many applications that use data science and analytics to gain insights from terabytes of data. These apps, however, do not address the challenge of continually discovering patterns for IoT data. In Hands-On Artificial Intelligence for IoT, we cover various aspects of artificial intelligence (AI) and its implementation to make your IoT solutions smarter. This book starts by covering the process of gathering and preprocessing IoT data gathered from distributed sources. You will learn different AI techniques such as machine learning, deep learning, reinforcement learning, and natural language processing to build smart IoT systems. You will also leverage the power of AI to handle real-time data coming from wearable devices. As you progress through the book, techniques for building models that work with different kinds of data generated and consumed by IoT devices such as time series, images, and audio will be covered. Useful case studies on four major application areas of IoT solutions are a key focal point of this book. In the concluding chapters, you will leverage the power of widely used Python libraries, TensorFlow and Keras, to build different kinds of smart AI models. By the end of this book, you will be able to build smart AI-powered IoT apps with confidence. What you will learn Apply different AI techniques including machine learning and deep learning using TensorFlow and Keras Access and process data from various distributed sources Perform supervised and unsupervised machine learning for IoT data Implement distributed processing of IoT data over Apache Spark using the MLLib and H2O.ai platforms Forecast time-series data using deep learning methods Implementing AI from case studies in Personal IoT, Industrial IoT, and Smart Cities Gain unique insights from data obtained from wearable devices and smart devices Who this book is for If you are a data science professional or a machine learning developer looking to build smart systems for IoT, Hands-On Artificial Intelligence for IoT is for you. If you want to learn how popular artificial intelligence (AI) techniques can be used in the Internet of Things domain, this book will also be of benefit. A basic understanding of machine learning concepts will be required to get the best out of this book.

Hands On Artificial Intelligence On Amazon Web Services

Hands On Artificial Intelligence on Amazon Web Services PDF
Author: Subhashini Tripuraneni
Publisher: Packt Publishing Ltd
ISBN: 1789531470
Size: 53.63 MB
Format: PDF, Docs
Category : Computers
Languages : en
Pages : 426
View: 764

Get Book



Book Description: Perform cloud-based machine learning and deep learning using Amazon Web Services such as SageMaker, Lex, Comprehend, Translate, and Polly Key Features Explore popular machine learning and deep learning services with their underlying algorithms Discover readily available artificial intelligence(AI) APIs on AWS like Vision and Language Services Design robust architectures to enable experimentation, extensibility, and maintainability of AI apps Book Description From data wrangling through to translating text, you can accomplish this and more with the artificial intelligence and machine learning services available on AWS. With this book, you’ll work through hands-on exercises and learn to use these services to solve real-world problems. You’ll even design, develop, monitor, and maintain machine and deep learning models on AWS. The book starts with an introduction to AI and its applications in different industries, along with an overview of AWS artificial intelligence and machine learning services. You’ll then get to grips with detecting and translating text with Amazon Rekognition and Amazon Translate. The book will assist you in performing speech-to-text with Amazon Transcribe and Amazon Polly. Later, you’ll discover the use of Amazon Comprehend for extracting information from text, and Amazon Lex for building voice chatbots. You will also understand the key capabilities of Amazon SageMaker such as wrangling big data, discovering topics in text collections, and classifying images. Finally, you’ll cover sales forecasting with deep learning and autoregression, before exploring the importance of a feedback loop in machine learning. By the end of this book, you will have the skills you need to implement AI in AWS through hands-on exercises that cover all aspects of the ML model life cycle. What you will learn Gain useful insights into different machine and deep learning models Build and deploy robust deep learning systems to production Train machine and deep learning models with diverse infrastructure specifications Scale AI apps without dealing with the complexity of managing the underlying infrastructure Monitor and Manage AI experiments efficiently Create AI apps using AWS pre-trained AI services Who this book is for This book is for data scientists, machine learning developers, deep learning researchers, and artificial intelligence enthusiasts who want to harness the power of AWS to implement powerful artificial intelligence solutions. A basic understanding of machine learning concepts is expected.

Hands On Chatbot Development With Alexa Skills And Amazon Lex

Hands On Chatbot Development with Alexa Skills and Amazon Lex PDF
Author: Sam Williams
Publisher: Packt Publishing Ltd
ISBN: 1788992431
Size: 48.95 MB
Format: PDF, ePub, Mobi
Category : Computers
Languages : en
Pages : 266
View: 1038

Get Book



Book Description: Build artificial intelligence (AI) powered voice and text conversational interfaces with Amazon Key Features Develop Alexa Skills to create a working voice user interface (VUI) Integrate Amazon Lex chatbots into Facebook, Slack, and text messages Learn to use AWS Lambda, Alexa Skills Kit, and Amazon Lex Book Description Have you ever wondered how Alexa apps are made, how voice-enabled technologies work, or how chatbots function? And why tech giants such as Amazon and Google are investing in voice technologies? A better question is: why should I start developing on these platforms? Hands-On Chatbot Development with Alexa Skills and Amazon Lex covers all features of the Alexa Skills kit with real-world examples that help you develop skills to integrate Echo and chatbots into Facebook, Slack, and Twilio with the Amazon Lex platform. The book starts with teaching you how to set up your local environment and AWS CLI so that you can automate the process of uploading AWS Lambda from your local machine. You will then learn to develop Alexa Skills and Lex chatbots using Lambda functions to control functionality. Once you’ve come to grips with this, you will learn to create increasingly complex chatbots, integrate Amazon S3, and change the way Alexa talks to the user. In the concluding chapters, we shift our focus to Amazon Lex and messaging chatbots. We will explore Alexa, learn about DynamoDB databases, and add cards to user conversations. By the end of this book, you will have explored a full set of technologies that will enable you to create your own voice and messaging chatbots using Amazon. What you will learn Create a development environment using Alexa Skills Kit, AWS CLI, and Node.js Build Alexa Skills and Lex chatbots from scratch Gain access to third-party APIs from your Alexa Skills and Lex chatbots Use AWS services such as Amazon S3 and DynamoDB to enhance the abilities of your Alexa Skills and Amazon Lex chatbots Publish a Lex chatbot to Facebook Messenger, Twilio SMS, and Slack Create a custom website for your Lex chatbots Develop your own skills for Alexa-enabled devices such as the Echo Who this book is for Hands-On Chatbot Development with Alexa Skills and Amazon Lex is for developers who are interested in building conversational bots and Alexa skills with Amazon. Prior experience with JavaScript programming is required.

Einf Hrung In Machine Learning Mit Python

Einf  hrung in Machine Learning mit Python PDF
Author: Andreas C. Müller
Publisher: O'Reilly
ISBN: 3960101120
Size: 40.15 MB
Format: PDF, ePub, Docs
Category : Computers
Languages : de
Pages : 378
View: 3320

Get Book



Book Description: Machine Learning ist zu einem wichtigen Bestandteil vieler kommerzieller Anwendungen und Forschungsprojekte geworden, von der medizinischen Diagnostik bis hin zur Suche nach Freunden in sozialen Netzwerken. Um Machine-Learning-Anwendungen zu entwickeln, braucht es keine großen Expertenteams: Wenn Sie Python-Grundkenntnisse mitbringen, zeigt Ihnen dieses Praxisbuch, wie Sie Ihre eigenen Machine-Learning-Lösungen erstellen. Mit Python und der scikit-learn-Bibliothek erarbeiten Sie sich alle Schritte, die für eine erfolgreiche Machine-Learning-Anwendung notwendig sind. Die Autoren Andreas Müller und Sarah Guido konzentrieren sich bei der Verwendung von Machine-Learning-Algorithmen auf die praktischen Aspekte statt auf die Mathematik dahinter. Wenn Sie zusätzlich mit den Bibliotheken NumPy und matplotlib vertraut sind, hilft Ihnen dies, noch mehr aus diesem Tutorial herauszuholen. Das Buch zeigt Ihnen: - grundlegende Konzepte und Anwendungen von Machine Learning - Vor- und Nachteile weit verbreiteter maschineller Lernalgorithmen - wie sich die von Machine Learning verarbeiteten Daten repräsentieren lassen und auf welche Aspekte der Daten Sie sich konzentrieren sollten - fortgeschrittene Methoden zur Auswertung von Modellen und zum Optimieren von Parametern - das Konzept von Pipelines, mit denen Modelle verkettet und Arbeitsabläufe gekapselt werden - Arbeitsmethoden für Textdaten, insbesondere textspezifische Verarbeitungstechniken - Möglichkeiten zur Verbesserung Ihrer Fähigkeiten in den Bereichen Machine Learning und Data Science Dieses Buch ist eine fantastische, super praktische Informationsquelle für jeden, der mit Machine Learning in Python starten möchte – ich wünschte nur, es hätte schon existiert, als ich mit scikit-learn anfing! Hanna Wallach, Senior Researcher, Microsoft Research

Grundkurs K Nstliche Intelligenz

Grundkurs K  nstliche Intelligenz PDF
Author: Wolfgang Ertel
Publisher: Springer-Verlag
ISBN: 3834894419
Size: 32.78 MB
Format: PDF
Category : Computers
Languages : de
Pages : 334
View: 1592

Get Book



Book Description: Alle Teilgebiete der KI werden mit dieser Einführung kompakt, leicht verständlich und anwendungsbezogen dargestellt. Hier schreibt jemand, der das Gebiet nicht nur bestens kennt, sondern auch in der Lehre engagiert und erfolgreich vertritt. Von der klassischen Logik über das Schließen mit Unsicherheit und maschinelles Lernen bis hin zu Anwendungen wie Expertensysteme oder lernfähige Roboter. Sie werden von dem sehr guten Überblick in dieses faszinierende Teilgebiet der Informatik profitieren. Und Sie gewinnen vertiefte Kenntnisse, z. B. hinsichtlich der wichtigsten Verfahren zur Repräsentation und Verarbeitung von Wissen. Vor allem steht der Anwendungsbezug im Fokus der Darstellung. Viele Übungsaufgaben mit Lösungen sowie eine strukturierte Liste mit Verweisen auf Literatur und Ressourcen im Web ermöglichen ein effektives und kurzweiliges Selbststudium. "Wolfgang Ertel [...] schafft es auf rund 300 Seiten verständlich zu erklären, wie Aussagenlogik, maschinelles Lernen und neuronale Netze die Grundlagen für künstliche Intelligenz bilden." Technology Review 04/2008

Statistik Workshop F R Programmierer

Statistik Workshop f  r Programmierer PDF
Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 3868993436
Size: 47.30 MB
Format: PDF, Kindle
Category : Computers
Languages : de
Pages : 160
View: 1493

Get Book



Book Description: Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.